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Abstract

Analysts at United States Transportation Command (USTRANSCOM) are tasked

with providing vehicle mixtures that will support the distribution of requirements as

provided in the form of Time Phased Force Deployment Data (TPFDD). An integer

programming model exists to search for optimal solutions to these problems, but it is fairly

time consuming, and produces only one of potentially several good quality solutions.

This research constructs a number of heuristic approaches to solving the Theater

Distribution Problem (TDP). Two distinct shipping methods are examined and applied

through both constructive and probabilistic vehicle assignment processes. Multistart

metaheuristic approaches are designed and used in conjnction with the constructive and

probabilistic approaches. Random TPFDDs of size 20, 100 and 1000 are tested, and

solutions are compared to those obtained by the integer programming approach.

The heuristic models implemented in this research develop feasible solutions to the

notional TPFDDs in less time than the integer program. They can very quickly identify a

number of good quality solutions to the same problem.
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A HEURISTIC APPROACH TO THE THEATER DISTRIBUTION PROBLEM

I. Introduction

Background

Recent budget constraints and economic crises have introduced a great deal of

motivation into finding efficiencies in logistics, distribution, and transportation in the

military. In an attempt to combat these budget constraints, a great deal of attention is given

to distribution planning. The goal of distribution planning is to “defuse strategic problems

before they become crises and resolve crises before they reach a critical stage [18].” In

support of this goal, indepth analyses are conducted in reference to potential engagements

for the military. A large portion of the analysis takes place at reoccurring force flow

conferences held by United States Transportation Command (USTRANSCOM), where

transportation feasibility and movement schedules are considered.

Distribution in the military, defined in Joint Publication 4-0, Joint Logistics, as “the

operational process of synchronizing all elements of the logistic system to deliver the

‘right things’ to the ‘right place’ at the ‘right time’ to support the geographic combatant

commander (GCC),” is carefully planned and conducted within joint operations.

Distribution has been previously modeled in an end-to-end fashion that includes three

major phases, depicted in Figure 1. These phases include intracontinental movement,

intertheater movement, and intratheater movement. Intracontinental movement takes

cargo and troops and moves them from a Point of Origin within the Continental United

States (CONUS) to a Port of Embarkation (POE), or its planned exit point from CONUS.

Intertheater distribution starts at the POE and brings cargo to a Port of Debarkation (POD)

outside CONUS (OCONUS). Intratheater movement, the final step, is concerned with
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getting the cargo from its POD in theater to its final destination. This thesis focuses

primarily on the final phase of distribution: intratheater movement [17].

Figure 1: End-to-End Distribution [17]

Strategic Mobility Modeling (SMM) is used in the military to represent the flow of

cargo and passengers in the end-to-end planning horizon. Movement of cargo is modeled

from its initial origin through its POE, POD, and to its end destination or employment

location. Varying levels of planning detail among these steps are considered through

different models. The most basic details are considered in resource planning, which is

used primarily for determining appropriate transportation assets for proposed scenarios in
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the context of long-term planning. Deliberate planning introduces more detail by

addressing plan feasibility in regards to specific deployment scenarios. The highest level

of detail in mobility modeling is referred to as crisis action planning. Taking only days or

weeks at the end of the planning horizon, crisis action planning reassesses previously

drafted plans and updates them due to recent changes or additional knowledge [21]. The

main focus at USTRANSCOM force flow conferences is in the first two levels of planning

– resource and deliberate.

The models used in SMM require inputs to provide output results that yield insight.

These inputs usually include a list of requirements, transportation resources, and scenario

information. Requirements are provided in the form of Time Phased Force Deployment

Data (TPFDD), which is essentially a list of cargo and passengers that need to be

transported to theater. For each requirement, weight, earliest arrival date, latest arrival

date, required delivery date, point of debarkation, point of embarkation, and final

destination are included.

The most detailed and relevant strategic mobility model currently employed in the

military is the Analysis of Mobility Platform (AMP). This particular SMM was developed

to model the entire process of end-to-end distribution. The program takes in a TPFDD as

input and simulates the movements. This process is extremely time consuming, and it

returns results based solely on the input given. A great deal of detail is considered, but the

data must be preprocessed and developed before determining the effects by judging the

output from the model. AMP requires information about which cargo to put on what types

of vehicles. Currently, the algorithms for assigning vehicles to requirements in a minimum

cost fashion are limited. For this reason, trial and error is used regularly. Often times, it is

so difficult to come up with reasonable data that solutions are accepted based solely on

feasibility instead of solution quality. Finding better solutions through running several

scenarios in the simulation is time consuming and computationally demanding.
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In order to improve modeling capabilities in the military, a method of assigning

requirements to vehicles and building a schedule for timely delivery is desired.

Determining the number and type of vehicles required may dictate how overseas bases are

set up for future engagements. Having the necessary beddown of vehicles in place at the

start of a conflict can help ensure cost effective and timely delivery of necessary

equipment to the men and women engaged in combat, possibly resulting in more efficient

mission completion and success.

The problem of assigning requirements to vehicles in theater can be described in

terms of a distribution network. Information from the TPFDD is used to build the network

and determine additional constraints. In each theater there is a set of PODs, where cargo

will initialize as well as a set of final destinations for these cargo. Due to the uncertain

nature of deployments, it does not make sense to plan out specific routes between these

locations. By assuming that a route exists between locations, deliveries can be scheduled

based solely on origin to destination. The requirements in each Theater Distribution

Problem (TDP) come directly from the TPFDD. Each item on the TPFDD has an

associated weight in short tons, an availability date, and a required delivery date, along

with many other parameters. Transportation modes considered between each

origin-destination pair are air, rail, and road. Different costs and vehicle types are

associated with using each of these modes. Additionally, each vehicle type has an

associated maximum payload, speed, and loading and unloading parameters.

The TDP initializes with all requirements distributed at their respective PODs. The

objective is to assign all requirements to vehicle types and schedule them on particular

days in a way that minimizes the total cost of delivering all requirements in the TPFDD.

Due to the nature of the military, there are a few special shipping cases that need to be

addressed. First, there may be requirements in the list that are too large to fit on a single

vehicle. In this case, it should be possible to split the delivery into several shipments.
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Similarly, there may be several requirements at a particular location whose available and

required delivery dates overlap. For this reason, vehicles should be able to process more

than one requirement at a time as long as capacity constraints are not violated.

Longhorn and Kovich, analysts working at USTRANSCOM, addressed this problem

by formulating an integer programming approach referred to as the Theater Distribution

Model [20]. Their model attempts to find exact optimal solutions to the problem, but

because the nature of integer programming and network formulation requires a large

number of variables, it did not successfully accomplish this goal. For this reason, the

initial TDM was further examined by Hafich, who developed a new formulation for the

problem, called the Improved Theater Distribution Model. His model greatly reduced the

number of unnecessary variables and was able to produce solutions, but still created a

problem that took a long time to generate and solve [14].

A valid tool for providing solutions to difficult problems is a heuristic, defined by

Silver in 2004 as “a method which, on the basis of experience or judgment, seems likely to

yield a reasonable solution to a problem, but which cannot be guaranteed to produce the

mathematically optimal solution.” Because they do not require strict model assumptions,

heuristic search methods can allow for better depiction of real world parameters. Heuristic

methods are often easier to explain and understand, are more robust to variations in

problem characteristics, and perform faster than strict optimization routines [29].

Basic heuristic methods include random generation, constructive methods, and local

improvement or neighborhood search methods. These methods are useful, but can be

expanded by adding rules to guide them in an iterative improvement fashion. This strategy

is commonly referred to as a metaheuristic approach. Some of the more popular

metaheuristic searches are simulated annealing, genetic algorithms, tabu search, and ant

colony algorithms. Several of these metaheuristic approaches have been developed and
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used for military applications such as weapons assignment problems, UAV routing

problems, aircraft loading problems, and aircrew scheduling problems [16].

Research Purpose and Objectives

The purpose of this research is to improve modeling capabilities in the domain of

military distribution. Currently, there are no models that effectively minimize the number

of vehicles necessary in theater to sucessfully distribute the requirements of a TPFDD.

The present method of trial and error is extremely time consuming and ineffective. The

current techniques for finding optimal solutions generate very large problems usually that

take a long time to solve. The solutions obtained using Hafich’s model aimed to minimize

total cost, but did not consider in detail the number of vehicles in place at each location.

Due to the size of the problem, it is likely that alternative solutions exist with costs in the

neighborhood of the optimal that are favorable due to a better distribution of vehicles by

location or daily use.

The objective of this research is to examine metaheuristic approaches to solving the

Theater Distribution Problem to provide a number of good solutions as opposed to a

single optimal solution.

By providing USTRANSCOM with multiple feasible solutions of good quality, the

analysts at force flow conferences may focus on picking one of several options instead of

struggling through timeless simulation runs in an attempt to find a single option that

works.

Organization

The remainder of this thesis is organized into four chapters. Chapter II discusses

problems similar to the Theater Distribution Problem that have been solved as well as

different heuristic approaches that may be applicable. Chapter III describes the heuristic

approaches applied to the problem in this research. Chapter IV discusses test problem

6



generation and the computational results of the heuristics as compared to the optimal

integer program. Chapter V provides concluding remarks and discusses possible future

research in this area.
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II. Literature Review

This chapter reviews the literature related to the theater distribution problem. It is

organized as follows: First, some attention is given to problems in the literature that are

related to the TDP, particularly the Pickup and Delivery Problem with Time

Windows (PDPTW) and machine scheduling problems. Next, a discussion of heuristics

and their relevance to this particular research is given. A number of basic heuristic

approaches are discussed, and specific attention is given to several metaheuristics

including multistart heuristics, Tabu search, simulated annealing, and genetic algorithms.

Pickup and Delivery Problem with Time Windows

A generalization of the vehicle routing problem with time windows, the PDPTW is

concerned with constructing optimal routes and schedules to satisfy transportation

requests at multiple locations. It is comparable to the Theater Distribution Model (TDM)

primarily due to the time window and capacity constraints involved. An exact formulation

for the problem was considered by Dumas et al, which used a column generation method

to solve problems involving multiple depots and heterogeneous vehicle fleets to

optimality. Their solution method uses a linear relaxation of the exact formulation

followed by a branch-and-bound enumeration. Problems with 19 to 55 customers were

solved using this approach [9].

Additional approaches to the PDPTW are found in the context of the Dial-A-Ride

problem (DARP), a problem arising primarily in door-to-door transportation services for

the elderly or disabled. The DARP is a generalization of the PDPTW. A detailed

description can be found in [6].

An early survey of time window constrained routing problems, by [30] points

towards approaches to the Multiple Vehicle Dial-A-Ride problem (MVDARP) suggested
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by Roy et al and Jaw et al. Both approaches use parallel insertion, which construct routes

for all vehicles simultaneously using distance as the main consideration. Jaw’s approach

was successfully implemented on a problem with 2600 customers and 20 homogeneous

vehicles. More recently, metaheuristic approaches such as Tabu search [6], and large

neighborhood searches [24] have been applied.

Due to the size of the problem considered in this research, exact approaches are not

favorable. The number of requirements in a TPFDD is far greater than any PDPTW or

DARP previously solved to optimality by any approach. For the TDP, it is important to

model a large scale multiple vehicle heterogeneous fleet. The heuristic approaches

developed for multiple vehicles described here have been applied to relatively small

single-vehicle problems. Additionally, the PDPTW and DARP are both concerned with

constructing routes for vehicles that start and end at central depots. The TDP requires

solutions based solely on an origin to destination approach, so this amount of detail is

unnecessary. The use of heuristics on instances of the PDPTW and DARP has been

successful. Even though the specific algorithms applied previously are not directly

applicable, it is likely that a heuristic approach to the TDP can produce favorable results

Machine Scheduling

The TDP is related to the machine scheduling problem; the goal is to assign

requirements to vehicles in the same way jobs are assigned to machines. Objectives

considered in the field of job scheduling include makespan, completion time, lateness, and

tardiness, but little information is available on machine minimization. In their 2009

survey, Potts and Strusevich [26] discuss the computational complexity of numerous

scheduling problems. Due to the level of computational complexity involved and the

recent increase in heuristic research, much of the research in recent decades has focused

on approximation schemes and heuristic procedures including local search, simulated

annealing, Tabu search, and genetic algorithms [26].
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Several publications exist in the field of scheduling that reference studies of different

neighborhood definitions within metaheuristic searches. For the flow shop problem, the

insert neighborhood, where a job is removed from its current position and inserted in a

different position, has been shown to give better solutions than the swap neighborhood,

which simply exchanges two jobs in a sequence. Both Osman and Potts [23] and Ogbu

and Smith [22] show this in the context of a simulated annealing algorithm. An insert

neighborhood is applicable to the TDP by taking requirements and shipping them on a

different day or vehicle type.

Because most scheduling problems assume a number of machines prior to

implementing approximation algorithms, it is difficult to apply the methods directly to the

TDP. The increase in heuristic methods in recent years strengthens the belief that

heuristics will be appropriate for this problem. However, an insert neighborhood can be

applied to the TDP, and will be useful within a metaheuristic search. More detail on

metaheuristics and neighborhood searches will be given in later sections of this chapter.

Heuristics

This section discusses basic heuristic search methods applied to general

optimization problems. In general, an optimization problem is structured as some function

of decision variables, possibly subject to a set of constraints. For illustrative purposes, the

following formulation is presented, from [27]:

Minimize f (x)

subject to gi(x) ≥ bi, i = 1, ...,m;

h j(x) = c j; j = 1, ..., n.

where x is a vector of decision variables, and f (·), gi(·), and h j(·) are general functions.

Heuristic solution techniques are often applied to such optimization problems and are

known for their simplicity, speed, and common sense notions.
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There are several problem circumstances that make the use of heuristics both

appropriate and advantageous. Those relevant to this particular problem include the use of

inexact data to estimate model parameters and solving an inexact representation of the

problem at hand [32]. Because the TDP is solved during resource and deliberate planning,

it is possible that parameters and problem characteristics will change. If the model being

used to represent the problem is simplified, it is already inaccurate, so the optimal solution

may be irrelevant. In this case, it makes more sense to find a good solution quickly than to

spend a great deal of time solving the model to optimality. The version of the TDP solved

in this research is simplified on a number of different levels, so taking time to solve it

optimally may be unimportant. Additionally, although exact methods do exist for solving

the TDP, they are computationally unattractive. The integer programming approach to the

TDP will find an optimal solution, but it is possible that it will take a very long time to do

so. Lastly, heuristic approaches are generally simple and easy to understand.

Understanding an approach will often instill confidence among leadership considering

results from the model, resulting in a higher likelihood of the solutions being

implemented. Additional reasons for using heuristic approaches as opposed to exact ones

can be found in [32] and [29].

There are a large number of basic heuristic methods that are used to solve large

problems quickly which also form the basis for more complex metaheuristic approaches.

These include random solution generation, problem decomposition, constructive methods,

and local improvement or neighborhood searches.

Random Generation.

Random solution generation is a very simple form of a heuristic. It operates by

generating some number of feasible solutions to a problem, evaluating them, and choosing

the best. The main benefit to random generation is that solutions can be generated very

quickly. If large numbers of solutions can be generated, it is likely that one of them will be
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good. Without considering specific problem characteristics, though, good performance is

not expected [29].

Baum and Carlson examine probabilistic aspects of the use of random generation in

decision problems through their ‘better than most’ approach. Their research allows for the

calculation of confidence limits on obtaining highly ranked solutions for a given number

of randomly generated feasible solutions. Although random generation is fast, in cases

where the probability of a random solution being feasible is very low, Baum and Carlson

argue that the ‘better than most’ approach can be computationally demanding [2].

Solutions to the TDP are in the form of very large and sparse matrices and checking

feasibility requires looping over several variables. For this reason, the use of purely

random solutions is not desirable, as most of the processing time is spent repairing and

checking feasibility of the solutions.

Problem Decomposition.

In problem decomposition, a large complex problem decomposes into a number of

smaller, simpler, subproblems. Complex optimization problems often consist of a number

of decisions that need to be made. If these decisions can be decomposed, whether by their

sequential nature, their chronological points in time, or their bearing on different

resources, the problem as a whole is often much easier to solve. The method of

decomposition depends a great deal upon specific problem characteristics. After the

subproblems are defined, they can be solved independently, sequentially, or iteratively

[29].

Clapp applied this technique to a multimodal PDPTW by splitting the problem into

two components. The first component builds a simplified network using Dijkstra’s

algorithm, which solves for distances to be used as input for calculating costs in the

scheduling portion of the heuristic. The second component solves the scheduling problem
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by first assigning all requirements to a specific mode of travel and then assigning vehicles

in a least cost fashion [4].

Constructive Approaches.

Constructive heuristics use specific problem characteristics to build solutions

iteratively. Each iteration of a constructive heuristic adds one element to a partial solution

until a full solution is found, typically concluding the procedure. Some constructive

heuristics are referred to as greedy because at each step in the procedure they pick the

solution element that most improves the immediate solution. This approach is quick to

implement and easy to understand, but can lead to poor solutions due to initial choices

voiding out possibly better choices later on [29].

The Clarke and Wright savings heuristic and the sweep algorithm, examined by

Cordeau et al. [5], are good examples of greedy approaches to the vehicle routing

problem. [28] and [31] are very early greedy algorithms for the popular multidimensional

knapsack problem that use an effective gradient as a measure of value for each project.

The first approach begins with an infeasible solution and systematically drops items until

it becomes feasible, while the latter begins with an empty solution and adds items one at a

time. Generally, greedy heuristics are designed with problem specific knowledge. For this

reason, these particular approaches cannot be directly applied to the TDP, but the concepts

behind them may assist in the development of an initial constructive solution.

Another constructive approach that is an alternative to greedy algorithms is the

semi-greedy heuristic, which builds a solution constructively, but considers a number of

solution elements at each iteration as opposed to only the best. Given a percentage p or

cardinality c, the semi-greedy approach described by [15] considers at each iteration either

the top c or the number of solutions within p% of the best, and chooses one at random to

add to the solution.
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Because constructive approaches are easy to implement and find solutions quickly,

they serve as a good starting point for heuristic approaches to the TDP. An initial solution

found by a greedy approach may not be the best quality, but it can be used as input to

more advanced techniques.

Local Improvement.

Local improvement methods, unlike the previously mentioned techniques, require a

feasible solution to the problem as a starting point. From this starting point, a

neighborhood of solutions is evaluated, and the current solution is replaced by one of the

solutions in the neighborhood with a better objective value. This process continues until

no improvement can be found over the current solution. More formally, given a solution

space S , cost function f , and neighborhood structure N, an algorithm for local

improvement, from [8] can be found in Algorithm 1.

Select a starting solution s0 ∈ S ;
repeat

Select s such that f (s) < F(s0) by a suitable method;
Replace s0 by s;

until f (s) > f (s0) for all s ∈ N(s0);
s is the approximation to the optimal solution.

Algorithm 1: Local Search [8]

Neighborhood definition is very important for this method. In short, the

neighborhood of a solution is defined as the set of all solutions that can be obtained by

performing a simple transformation on the current solution. Several neighborhoods can be

obtained from the same solution. Examples of simple transformations include swapping

0-1 bits in binary problems, exchanging the order of jobs in a sequencing problem, or

interchanging two or more edges in a routing problem. To save time on large problems,

some local searches move to the first improving solution as opposed to evaluating all

solutions and choosing the best. Local improvement methods can guarantee local optimal
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points, but they do not guarantee globally optimal solutions. As a result of this, local

searches perform best when combined with diversifying measures such as randomly

generated restarts or as part of a metaheuristic optimization routine [29].

Metaheuristics

Basic heuristics are useful in finding good quality initial solutions. Certain

heuristics, like random generation, are very good at finding diverse solutions from a large

area of the search space. Other methods, like local improvement, are better at intensifying

the search in a particular area. In order to build a strong, capable heuristic, both of these

qualities should be present. One way of ensuring a search that is diverse but also has the

ability to intensify is to add an outer process to guide it. This technique is commonly

referred to as the use of a metaheuristic. Metaheuristics are very popular and have been

studied a great deal in reference to problems with various applications. This section will

discuss multistart constructive approaches, Tabu search, simulated annealing, and genetic

algorithms.

Multistart Constructive Approaches.

The solutions obtained through the use of constructive heuristics, as described in the

previous section, are highly dependent on the starting point of the procedure. This is

especially true for greedy approaches, where typically only one solution is obtained from

each starting point. An effective method for generating a large number of solutions very

quickly is through the use of a multistart constructive approach. This approach runs a

constructive heuristic multiple times, each with a different starting point. After a set

number of solutions are generated, the best solution can be chosen and returned, or local

searches can be performed on the most favorable solutions [29].

An adaptation to the simple multistart constructive approach is the greedy

randomized adaptive search procedure (GRASP), originally developed for the partition

problem, which deals with separating clusters of objects in order to minimize interaction.
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Similar to the semi-greedy approach described in the previous section, GRASP works

constructively by considering one solution element at a time. At each iteration, a

candidate list of solution elements is constructed based on solution quality, and one

element from the list is chosen at random to be the next piece of the solution. After the

solution is entirely constructed, a local improvement phase is triggered. This process is

performed for a set number of iterations, and the best solution is reported. Readers

interested in GRASP can reference [19].

Because multistart constructive approaches run quickly and require very little

additional structure than a simple constructive approach, they are very applicable to the

TDP. A multistart constructive approach can be easily implemented on the TDP and can

identify several good solutions. Because of this, the multistart constructive approach is the

first type of metaheuristic applied in this research.

Tabu Search.

Since it’s development in the mid 80s, Tabu Search has been applied to a large

number of problems, including vehicle routing, network design, scheduling problems, and

several military applications [13] [16]. Originally conceived by Fred Glover as a part of a

graduate school project, Tabu search introduced memory structures in order to expand the

search space and prevent local optimality traps. Provided that a starting solution is given,

a properly defined neighborhood exists, and there exists some function that evaluates the

quality of the solutions in the neighborhood, Tabu search can be used as an effective

guiding tool.

Unlike some of the previously discussed methods, Tabu search is not constructive,

and must begin with a complete solution as input. This solution can be obtained by a

simple constructive, greedy, or random approach. The procedure then develops additional

complete solutions by examining the neighborhoods of the current solution. At each step

in the search, a move to a solution in the neighborhood is performed, causing the current
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solution to change. In order to escape from local optima, Tabu search permits moves to

inferior points. Additionally, to avoid the possibility of cycling back to recent solutions, a

memory of past solutions or solution characteristics is kept on a tabu-list. These solutions

are forbidden for the ‘length’ of the list, or a set number of iterations. Some instances of

Tabu search permit moves to tabu solutions with desirable qualities through the use of an

aspiration criteria, such as an objective value better than the best found so far. The

procedure is terminated after either a set number of iterations is completed, or if no

improvement is achieved after some number of consecutive iterations. Two flow charts

from [13] describing the procedure are available in Figures 2 and 3. Readers interested in

Tabu search should reference [13] and [11] for basic understanding and practical

applications of the method, and [12] for additional refinements, adaptations, and

applications.

Figure 2: Tabu Search[13] Figure 3: Tabu Status Check [13]

Batitti and Tecchiolli developed the reactive tabu (R-TABU) in 1994, which

introduced long term memory and an adjustable length tabu list. In addition to the basic

17



search memory of solution value, this approach also keeps track of each visited solution’s

location, the iteration it was last visited at, and the number of times it has come up in the

search. The method also introduces parameters which allow for increasing and decreasing

the length of the tabu list and an escape mechanism that assists in increasing diversity in

the search. For a detailed explanation of R-TABU, see [1].

In “A Guide to Vehicle Routing Heuristics,” Cordeau et al give several examples of

Tabu search strategies applied to the vehicle routing problem. Their results give

comparative statistics on 5 different Tabu search based metaheuristics, including an

adaptive memory approach, which achieved a high level of accuracy. For more

information on the different search strategies used and see [5].

In 2004, Crino, Barnes, and Nanry developed a group theoretic Tabu search to solve

the theater distribution vehicle routing and scheduling problem. The particular problem

determined vehicle routes and schedules in order to achieve time definite delivery (TDD)

for a list of demands. Their detailed methodology resulted in near optimal routing and

scheduling of vehicles, and was applied to a number of problems of varying size, each

with up to 90 vehicles and 30 requirements [7]. This research was followed by another

application in 2010 by Burks et al. which introduced pickup and delivery and location

requirements. Their implementation of Tabu search solved problems with 80

heterogeneous vehicles and up to 200 demands [3].

Although the research done by Crino et al.[7] and Burks et al. [3] considered more

detail than necessary for the research conducted here, their use of Tabu search shows

favorable results to a similar problem. The instances of Tabu search implemented by

Cordeau et al also show favorable results for a vehicle routing problem [5].

With the proper framework in place, it is likely that an implementation of Tabu

search, tailored to the TDP, will identify high quality solutions. This framework would

include a heuristic that builds initial solutions, a neighborhood search to examine
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additional solutions, and a Tabu outer function that tracks previous solution attributes and

values. This research does not explicitly examine the aplication of Tabu search due to the

excessive framework required.

Simulated Annealing.

The optimization routine referred to as simulated annealing was introduced in the

early 1980s. The name of the procedure is derived from the physical process of annealing,

where materials are heated to a liquid state and systematically cooled back down to a solid

state, resulting in a stronger material. The algorithm mimics this process through the use

of a temperature parameter, which is controlled throughout the search. Designed primarily

to assist in escaping from local optima, simulated annealing, like Tabu search, begins with

a complete solution and generates additional solutions in an iterative fashion. At the start

of the search, the temperature parameter is high, introducing a random element to the

search, and can allow for non-improving moves. As the search continues, the temperature

parameter is iteratively decreased, which increases intensification and forces convergence

to a local optimum. An outline of the process, from [8] can be found in Algorithm 2.

Readers interested in detailed methodology of simulated annealing should reference

[10] which discusses some tips for choosing parameters in a simulated annealing search,

some performance improving modifications to the algorithm, and points towards

computational results in the literature.

Simulated annealing is a quick running heuristic that requires little memory and is

good at finding diverse solutions through controlled randomization. In general, only the

best solution found so far is maintained in memory, but the method can be adapted to

include several of the best found solutions. By increasing the memory in the procedure, it

is likely that an implementation of simulated annealing will produce favorable results to

the TDP in a short amount of time. Similar to Tabu searches, though, Simulated
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Select a starting solution s0;
Select an initial temperature t0 > 0;
Select a temperature reduction function α;
Repeat

Repeat
Randomly select s ∈ N(s0);
δ = f (s) − f (s0);
if δ < 0 then

s0 = s
else

generate random x uniformly in the range (0, 1);
if x < e

−δ
t then

s0 = s
end

end
Until iterationcount = nrep;
Set t = α(t);

Until stopping condition = true;
s is the approximation to the optimal solution.;

Algorithm 2: Simulated Annealing

Annealing requires an initial framework of an initial solution generator and a

neighborhood search before it can be considered.

Genetic Algorithms.

Genetic Algorithms were developed by relating the concepts of natural selection to

optimization and the search for good solutions. The idea of strong characteristics

surviving through several generations and combining to build strong organisms was

translated to optimization by Holland in the 1960s and 70s. The most basic genetic

algorithm begins with a population of solutions in the form of encoded representations of

the decision variables. These solutions are evaluated to determine their fitness levels, and

a certain number of the most fit are given more opportunity take part in recombination.

Similar to the way reproduction takes place in nature, two “parent” solutions are

combined to create offspring in each iteration of a genetic algorithm. The simplest method

for combining parents is through a one-point crossover operator, which chooses a point in
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one parent solution and swaps everything following that point with the elements of the

other parent solution. An example of a one-point crossover, with crossover point X, parent

solutions P1 and P2, and offspring O1 and O2, is given in figure 4. In addition to

crossover, most genetic algorithms utilize a mutation operator, which chooses a random

element of a solution and changes it. This introduces a degree of randomization, which

helps keep the population from converging prematurely to a local optima [27].

Figure 4: Example of One-Point Crossover in a Genetic Algorithm [27]

The use of crossover and mutations operators can cause many of the offspring

solutions to be infeasible. As a result of this, feasibility checks and repair operators are

required. Because the TDP has very limiting constraints and checking feasibility is

difficult, this method is not particularly useful in the context of this research.

Conclusion

Although a great deal of research has been done in the area of routing and

scheduling vehicles with time constraints, most of the approaches involve a level of detail

that is unnecessary for this particular problem. In reference to the PDPTW, most of the

attention in the research is given to the routing aspect of the vehicles, which is not

considered in the TDP. Additionally, the approaches assume a central depot and often a

set fleet size. The goal of the TDP is to find the least cost set of vehicles that satisfies the

origin to destination requirements of the TPFDD, so a fleet size is not required and a

central depot is not considered.
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Although little research has been done on minimizing the number of machines in

scheduling problems, the types of approaches for other problems in the field will likely be

useful in this case. The research done on the effectiveness of neighborhood searches gives

a starting point for a metaheuristic approach to the TDP.

The literature available for heuristic research is vast. The specific algorithms

covered in this chapter are only a few of the more popular approaches. In terms of this

particular application, a multistart constructive approach is used to identify good quality

solutions, and simulated annealing and Tabu search are likely to identify high quality

solutions after a reasonable neighborhood search is constructed. Genetic algorithms are

not expected to perform well due to the large size of a TPFDD and the likelihood of

generating infeasible solutions through crossover and mutation operations.

This research focuses primarily on finding good quality constructive algorithms that

can identify feasible solutions to the TDP. It lays a framework for further applications of

metaheuristic approaches such as Simulated Annealing or Tabu search, but does not

explicitly develop or implement them.
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III. Methodology

This research examines of a number of heuristics designed to build solutions to the

TDP. Two shipping methods are considered. The first shipping method takes requirements

and attempts to ship them as early as possible within their time windows. The second uses

the entire available window, attempting to ship with fewer vehicles over a longer period of

time. Both of these shipping methods are used in conjunction with two different kinds of

constructive heuristics that consider vehicle types in different ways. The first considers

vehicles strictly in order of minimum cost, while the second considers an input of desired

ratios and probabilistically chooses vehicles for each shipment. In total, four basic

constructive algorithms are built. Finally, metaheuristic approaches, in the form of

multistarts, were applied to all algorithms in an attempt to locate a number of good

solutions, and in the case of the probabilistic multistart, to converge on a favorable ratio of

vehicles. Six multistart heuristics are considered in this research.

This chapter is organized by first examining both shipping functions. An explanation

of the constructive heuristics that consider modes in order of minimum cost will follow.

Probabilistic approaches are explained next. Finally, the chapter concludes with a

discussion of the multistart heuristics that work in conjunction with all four algorithms.

All functions described here require a TPFDD document and supporting data to

build constraints. Table 1 contains some notional TPFDD data in the form that was used

by the programs discussed in this research. Column 1 contains the requirement number or

ID, which is used for referencing the data in the associated rows. In some cases, these

rows are shuffled, but the requirement number still aligns with the remainder of its row.

The second and third columns refer to the POD and the final destination of the

requirement. The column labeled ‘tons’ lists the weight in shorttons of the corresponding

requirement. The earliest available date (EAD) refers to the day that the requirement
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arrives at it’s POD. It is not available for shipping until the following day. RDD refers to

the requirement’s due date. Finally, maximum allowable lateness (MAL) refers to the

number of days a requirement is permitted to be delivered past its RDD.

Req POD Dest Tons EAD RDD MAL
1 1 1 500 2 7 1
2 1 1 250 3 8 1
3 1 1 750 4 9 1
4 1 1 200 5 10 1
5 1 1 100 6 11 1
6 1 2 600 2 8 1
7 1 2 400 3 9 1
8 1 2 200 4 10 1
9 1 2 300 5 11 1
10 1 2 500 6 12 1
11 2 1 500 4 8 1
12 2 1 400 5 9 1
13 2 1 300 6 10 1
14 2 2 1000 3 8 1
15 2 2 200 5 10 1
16 2 2 500 7 12 1

Table 1: Notional TPFDD

A number of assumptions were made in the context of these algorithms. First, all

tons are assumed to be ‘liquid’. In other words, it is assumed that the requirements can be

broken up into as many shipments as desired. In the real world, there are shipments, such

as tanks or other large equipment, that cannot be broken down. Next, if a vehicle is chosen

for a particular day, it is assumed to complete all possible cycles. This saves time and

calculation efforts, but may result in a calculation of shipping more than the required

tonnage. To alleviate this, the functions attempt to fill this space with other available

requirements. Lastly, all outloading and unloading calculations are made for the same day.

This is true for vehicles whose cycles are at least 0.5 per day, but it does not apply to

vehicles with longer cycle times.

24



Shipping Functions

The shipping algorithms discussed here are not built to work as standalone

functions. Instead, they work within the constructive and probabilistic routines discussed

in later sections of this chapter.

The first method of shipping works with all functions in this research. The method

is called ExtraRoom and it checks if there are vehicles under capacity already traveling the

necessary route for the specified requirement and time window. Pseudo-code for the

function is included in Algorithm 3 for reference.

Data: Given start and last
for day = start:last do

if extraroom(i, j, day) > 0 and reqleft(n) > 0 then
fill extraroom with req(n);

end
end

Algorithm 3: Extra Room

The next method of shipping, Ship Early, considers the concept of shipping goods as

early as they are available. Prior to calling the function, the number of vehicles needed to

ship a requirement with the current vehicle type is calculated. If it is possible to load and

unload this number of vehicles at the corresponding POD and destination on the first

available day, the algorithm assigns the shipment and concludes. If it is not possible to

ship the entire requirement on the first available day, the maximum feasible number of

vehicles is assigned instead. The remainder of the requirement is then used to recalculate

the number of vehicles required. Next, an attempt is made to ship the requirement entirely

on the next day in the available window. This same process continues until there is

nothing left to be shipped for the current requirement, or every day in the time window has

been considered. Pseudo-code is included in Algorithm 4 for reference.
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Data: Given current vehicle m, start, and f inish
day = start;
while reqleft > 0 and day < finish do

if outloading + numveh < maxoutloading and
unloading + numveh < maxunloading then

ship remaining requirement;
update unloading, offloading, cost, and reqleft;

else
ship as much as possible on current day;
update unloading, offloading, cost, and reqleft;
recalculate numveh required to ship current requirement;

end
day = day + 1;

end
if reqleft <0 then

extraroom = - reqleft;
end

Algorithm 4: Ship Early

The third shipping function, Ship Over, considers the entire available time window

for a particular requirement. Similar to Ship Early, Ship Over runs within a constructive or

probabilistic routine, where the current vehicle and requirement combination is

determined. Given this particular vehicle type, the ship function checks to see if there is

room for one more vehicle on any of the days in the available window. If this is the case,

the function iterates through each day, adding one of the current vehicle type to each day

where it is feasible. This process continues until the entire requirement has been shipped,

or there is no longer room for more vehicles of the current type within the available time

window. Pseudo-code for the function is available for reference in Algorithm 5.
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Data: Given current vehicle m, start, and f inish
while reqleft > 0 and m can ship between (start, finish) do

for day = start to last do
if outloading + 1 < maxoutloading and
unloading + 1 < maxunloading then

add one vehicle to current day;
update unloading, offloading, cost, and reqleft;

end
end
if reqleft < 0 then

extraroom = - reqleft;
end

end
Algorithm 5: Ship Over

Constructive Functions

The constructive functions designed in this research, referred to as Construct 1 and

Construct 2, are greedy and thus do not necessarily provide optimal solutions. They are

designed primarily to provide a solution in a short amount of time. Both greedy

constructive approaches require inputs including the TPFDD, average payload, possible

cycles between origin and destination combinations, outloading capacities for each origin,

and unloading capacities for each destination. Given these inputs, the functions construct

solutions to the TDP by utilizing one of the previously discussed shipping methods. Each

time the function is called, the solution matrix is empty. After each iteration of the

function, pieces of the solution are added until all requirements are exhausted, leaving the

shipping schedule in matrix form. This matrix can be used to display a final solution. The

cost, or objective value, of the solution is updated throughout the program. Each time a

shipment is assigned, the cost is updated accordingly. At the conclusion of the procedure,

the total cost is returned.

The nature of the constructive algorithm ensures that solutions are feasible in terms

of outloading and unloading, but not by lateness. Some solutions require deliveries past
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their maximum allowable lateness. When portions of requirements are delivered past their

required delivery date (RDD), a penalty function, which considers amount of tonnage late

and time past due, is applied. Poor solutions are often a reflection of an inability to deliver

all requirements on time.

Both Construct 1 and Construct 2 follow the procedure described by Algorithm 6,

which describes the shipments made on time, and Algorithm 7, which describes how late

shipments are scheduled. The only difference between the two functions is that Construct

1 ships with Ship Early, and Construct 2 ships with Ship Over.

The algorithm orders all vehicles by minimum cost after reading in all associated

data including the TPFDD, available vehicle types, and constraint values. It also

calculates the number of vehicles required to deliver each requirement by every vehicle

type. Next, starting with the first requirement listed in the TPFDD and continuing in order

of appearance, the program looks up the POD, i, and destination, j, for the current

requirement, n. Once this information is obtained, the program checks to see if there is

any extra room available on vehicles already traveling from i to j on any day between the

current requirement’s EAD and RDD. If extra room is available, it is utilized, and the

remaining requirement is updated to reflect the amount shipped with previous

requirements.

VehOrder = Order vehicles from least to most expensive;
for n = 1 to numreq do

ExtraRoom(EAD(n),RDD(n));
for v = 1 to numveh do

m = VehOrder(v);
if reqleft >0 and shipment by m is possible then

Ship(EAD(n), RDD(n));
end

end
end

Algorithm 6: Construct (On Time)
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The next step in the algorithm is to assign a vehicle to the current requirement. By

first ordering all vehicles in the order of minimum to maximum cost, the program attempts

to ship entirely by the most inexpensive vehicle. A more expensive type is used only if it

is no longer feasible to ship by the cheapest vehicle. Examples of infeasibility include a

location/destination pair not being able to unload and outload a particular vehicle mode, or

unloading and outloading constraints for a particular mode being full. If a requirement

cannot feasibly travel exclusively by one vehicle type, as much as possible is shipped by

the least expensive vehicle available, and the remainder of the shipment is considered for

the next vehicle type.

After all requirements are considered for delivery within their EAD and RDD, the

function loops through all requirements once more to check if any shipments were not

fulfilled. In the event that some requirement remains, the function checks again for any

extra room that may have opened up due to vehicles being scheduled after the requirement

was first considered for shipment. If this does not clear up the requirement in full, the

requirement is scheduled on or after it’s MAL using the same method as in the on time

shipments.

Like most greedy algorithms, the solutions obtained depend upon their starting

point. In this particular instance, the ‘starting point’ is the order of requirements

considered for shipment. It is possible to reproduce a particular solution simply by using

the same ordering of requirements.

Because most requirements in a TPFDD require many vehicles, the first constructive

function will usually build solutions that fill up unloading and outloading constraints right

away. The greedy nature of this algorithm can result in later requirements being unable to

ship within their time windows, resulting in a number of late deliveries. The second

constructive function attempts to alleviate the greediness of the algorithm by shipping

over the entire available window.
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for n = 1 to numreq do
if reqleft >0 then

ExtraRoom(EAD(n),RDD(n));
end
if reqleft > 0 then

start = RDD;
finish = RDD+MAL;
while reqleft >0 do

ExtraRoom(start,finish);
for v = 1 to numveh do

m = VehOrder(v) if shipment by m is possible then
Ship(start, finish);

end
end
start = finish;
finish = finish +1;

end
end

end
Algorithm 7: Construct (Late)

Greedy constructive algorithms are helpful in that they provide solutions very

quickly. However, both constructive functions provide solutions based on starting

position. When given the same TPFDD, a constructive function of this type will always

return the same solution. To find varied solutions with each run of an algorithm,

randomization is introduced.

Probabilistic Functions

The probabilistic functions implemented in this research rely on randomizing the

choice of vehicles in order to ensure that many different solutions are generated for the

same TPFDD.

The probabilistic methods implemented were modeled primarily after the

constructive functions. A probabilistic element was introduced to ensure different

solutions resulted from each run of the program. To do this, the functions require
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additional inputs of ratios which list the desired probability for choosing each vehicle

type. In order for the programs to function properly, these ratios must add up to one.

Because not all vehicle types are always available at every location, the first step in each

function is to reevaluate these given ratios based on locations. If a vehicle type is not

available at a particular location, the probability assigned to that vehicle is split evenly

between all other available vehicle types. This results in a number of location specific

ratios, indexed by i and j.

for req = 1 to numreq do
ExtraRoom(EAD(n),RDD(n));
while reqleft > 0 and some vehicle type is feasible do

k = pick a vehicle type at random from feasible vehicles;
if k can travel from i to j between EAD and RDD then

Ship(EAD,RDD);
else

k is infeasible;
end

end
end

Algorithm 8: Probabilistic (On Time)

The probabilistic functions work by making random draws to choose vehicle types

for shipment while keeping track of which vehicles are feasible for the current

requirement being considered. Each time a new requirement is considered for shipment,

the current ratio is set equal to the previously calculated ratios by location corresponding

to the current requirement’s POD and destination. By placing these values in a separate

variable, it is possible to make temporary changes to the ratios. The function randomly

chooses a vehicle type for the current requirement and attempts to ship by this vehicle. If

it is no longer possible to add any vehicles of the current type within the shipping window,

the ratio for the current vehicle is set to zero and the remaining ratios are adjusted
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accordingly. This process continues until there is nothing left of the current requirement

or until all vehicles are infeasible.

Pseudo-code for the on time delivery portion of the probabilistic methods is

available within Algorithm 8. The only difference between the first and second

probabilistic functions is that Probabilistic 1 ships by Ship Early, and Probabilistic 2 ships

by Ship Over.

Late deliveries for the probabilistic functions are considered after attempting to

schedule on time deliveries for all requirements in a similar manner as in Algorithm 7. In

the event a requirement cannot be delivered on time, it is considered for travel by extra

room, followed by delivery within it’s MAL, and finally, delivery past MAL. Pseudo-code

for the late portion of the probabilistic algorithm is found in Algorithm 9.

for n = 1 to numreq do
if reqleft >0 then

ExtraRoom(EAD(n),RDD(n));
end
if reqleft > 0 then

start = RDD;
finish = RDD+MAL;
while reqleft > 0 and some vehicle type is feasible do

ExtraRoom(start,finish);
k = pick a vehicle type at random from feasible vehicles;
if k can travel from i to j between start and f inish then

Ship(start, f inish);
else

k is infeasible;
end
start = finish;
finish = finish +1;

end
end

end
Algorithm 9: Probabilistic (Late)
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Multistart Heuristics

Both the constructive and probabilistic algorithms find solutions to a given TPFDD.

Unfortunately, there is no guarantee that these solutions are favorable or even feasible. In

order to find a number of good solutions to a given TPFDD, it is necessary to run these

constructive algorithms a number of times from different starting points through the use of

a metaheuristic. This research considers three particular metaheuristics, in the form of

multistarts, that work in conjunction with the constructive and probabilistic functions.

The first multistart heuristic works with the constructive functions. It requires as

input a specified number of iterations to complete as well as a specification of which

function, Construct 1 or Construct 2, to build the solutions. Because these approaches

depend on the order of the requirements in the TPFDD, the multistart heuristic works by

randomizing the order of the requirements before attempting to build a solution. Each

iteration of the function uses a different permutation of requirements. It returns an

objective value and the permutation of requirements that created it. The cost and

permutations for each iteration, as well as the minimum cost found so far, are maintained

in memory throughout the heuristic. By saving permutations instead of full solutions, it is

possible to recreate solutions identified as favorable without using up too much memory.

Due to the nature of the constructive algorithms, running the program on the same

permutation of requirements will build an identical solution.

Unfortunately, because the heuristic is purely random, there is no guarantee that

good solutions will be found. Increasing the number of iterations helps ensure a favorable

probability of finding a good solution. Because the multistart heuristic runs so quickly, it

is reasonable to increase the iteration count to find better solutions.

This approach is useful for finding multiple solutions, but it does not have the ability

to converge on local optima. It is purely random. The probabilistic multistart, however,

does take convergence into consideration, and will search the solution space while

33



converging on the best found ratio in the procedure. The function takes in a TPFDD,

sorted by minimum delivery window, a set of initial ratios, a number of iterations, and a

specification of which function, Probabilistic 1 or Probabilistic 2, to build solutions with.

Because this approach does not involve shuffling the TPFDD before each iteration,

ordering the TPFDD in order of minimum delivery window allows for difficult or

bottleneck shipments to be scheduled first. This reduces the occurance of shipments being

forced late due to unecessary early shipment of other easier to schedule requirements.

Given all necessary inputs, MultistartProb will initialize storage vectors to maintain

memory, by iteration, of ratio, objective value, best found objective value, and best found

ratio. The ratio for each iteration, or current ratio (CR), is calculated with the following

formula,

CR = IR +
η

iter
∗ (BR − IR)

where IR is the initial ratio given by the user, η is the current iteration number, iter is the

total number of user specified iterations, and BR is the best ratio found so far. This

calculation ensures that the ratios used to construct solutions converge to the best found

ratio in the procedure. If a new best is found within the program, the ratios will continue

converging toward this new best. Figure 5 shows a graph depicting the best found solution

and the current solution value for one run of the program.

The randomness of the algorithm is apparent in the large fluctuations in the current

iteration’s objective value. However, as the iteration count gets closer to the specified

limit, in this case 500, the spread of solutions becomes smaller. This is due to the program

converging on a best ratio identified in the search.

The last metaheuristic applied is a combination of the first two. It works the same

way as the probabilistic multistart, but it shuffles the TPFDD before each iteration. This

increases the amount of randomness in the method and allows for a broader search.
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Figure 5: Objective Versus Best Found So Far

Conclusion

This chapter discusses the inner workings of the algorithms, both constructive and

probabilistic, developed in this research. It also introduced three metaheuristic

approaches. Chapter IV will discuss testing and analysis of these functions.

35



IV. Testing

The main focus of this research is to efficiently provide reasonable solutions to the

TDP. To test the algorithms constructed in this research, the multistart heuristics

discussed in Chapter 3 are run on various test problems. The best found objective values

and the time at which they were found is recorded for all problems. All six variations

described in Chapter III are tested, and the results are compared to the optimal solutions

acheived by Hafich’s integer program.

This chapter begins by discussing the development of the notional TPFDD data used

for testing. A description of the test plan, some specific considerations, and problem

parameters are also discussed. Finally, results from the tests are given and conclusions are

drawn.

Data

The TPFDDs used in this analysis were constructed by a Visual Basic program

designed by Percival [25]. Using parameters that attempt to mimic real world data, the

program randomly generates notional TPFDDs of various sizes. Each TPFDD is

generated as a .csv file, and includes 20, 100, 1000, 5000, or 10,000 requirements. Due to

lack of time and the amount of memory required for calculating solutions, this research

only analyzes problems up to size 1000. The random TPFDD data also includes each

requirement’s corresponding POD and destination in alpha-numeric format, weight in

short tons, EAD, RDD, and MAL. To work directly with the TPFDDs, the POD and

destination data points were converted to numeric indices. This allowed importing the

TPFDDs into Matlab, where the bulk of the testing and analysis took place. Because real

world TPFDDs are classified, notional data are created for the purpose of testing. The
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development of random TPFDD data is a new and ongoing project; different parameters

for their generation are being examined.

There are several features in the data that can effect the performance of the

algorithms. Some problem characteristics from the first set of test problems, built using

the original TPFDD generator, are available in Table 2. First, the average weight of

requirements in the TPFDD was noted for each problem. The span of days that the

problem considered, calculated by taking the maximum RDD and subtracting the

minimum EAD for each data set, was also considered. Finally, the average delivery

window, or gap, was calculated by taking the difference between each requirement’s RDD

and EAD and averaging over all requirements.

Table 2: Dataset A TPFDD Statistics

Metric 20 100 1000

Weight 257.95 285.21 268.19
Range 14.74 30 76.4
Gap 4.032 4.066 4.047

Table 2 shows that for the most part, the average requirement weight and delivery

windows stay more or less constant as problem size increases. The range of the problem is

the only attribute that clearly increases with problem size.

The second set of test problems was designed in an attempt to alleviate the tightness

of the delivery windows and create something that was more realistic in terms of actual

TPFDD data. To accomplish this, data from 5000 requirement problems were compared

to data from a declassified condensed version of a real world TPFDD containing 4,426

requirements. The comparison is available in Table 3.

Table 3 shows several differences between the problems being randomly generated

and the real world TPFDD. Particularly, the difference in the Gaps for the problems is
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Table 3: Comparison of Dataset A to Real World TPFDD Data

Metric 5000 Real TPFDD

Weight 300.46 197.17
Range 187.75 295
Gap 4.070 16.93

very large. To better mimic real world data, Dataset B was built with an increased delivery

window. The histogram in Figure 6 shows the distribution of the gaps in the declassified

TPFDD.

Figure 6: Frequency of Gap Length for Real World Data

In Dataset A, a random number drawn from a uniform distribution was used to

generate due dates. Clearly, the data from the real world TPFDD do not follow a uniform

distribution. For this reason, the gaps in Dataset B are created with normally distributed

random variables. This ensures that the majority of requirements have a delivery window

close to the average of 15 days, but still allows some requirements to have shorter or

longer windows. Although the data from the declassified TPFDD do not necessarily

follow a normal distribution, it is a better approximation than a uniform distribution.
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Problem characteristics from Dataset B, the testing set for this research, are recorded in

Table 4.

Table 4: Dataset B TPFDD Statistics

Metric 20 100 1000

Weight 243.41 357.68 371.25
Range 30.95 49.75 94.15
Gap 15.97 15.27 15.45

Testing Considerations

Because the integer programming model is designed to run for at least 20 seconds, it

is desirable to run the heuristics for an equivalent amount of time. However, the

probabilistic functions use the total iteration number in calculations at each iteration, so it

was not possible to simply run the functions for a set period of time. Instead, the first step

in setting up the tests was to determine a comparable number of iterations to run on the

heuristics.

Running the heuristics for the same amount of time as the integer program allows

for comparison of performance between each heuristic and the optimal solution. However,

because the performance of heuristics is a function of the number of iterations completed,

it is difficult to determine which of the heuristics is the most efficient. For this reason, all

hueristics had to perform the same number of iterations. Additionally, in order to ensure

that various solutions were due to differences in the heuristics and not to random variation,

a random number stream was maintained for all problems.

To find a reasonable iteration count for each problem size, the number of iterations

completed by each heuristic in 20 seconds of computer time was recorded. This data was

used to determine a number of iterations that enabled the majority of the heuristics to run

for 20 seconds. These numbers are provided with the problem results.
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All solutions identified as the best are based on cycle cost considerations and do not

explicitly account for the beddown required by the solution. The heuristics attempt to

reduce the number of vehicles in the solution by filling empty space and reusing vehicle

types for each requirement; the cost of obtaining vehicles is not considered in the

objective function. Additionally, the best found solutions are more than likely one of

several solutions found with similar costs throughout the course of the search. Figure 7

shows an example of this graphically.

Figure 7: Multistart Random Approach Solution Value and Best-so-Far

The graph in Figure 7 depicts a case where the best found solution from a

constructive approach is possibly one of several good quality solutions. This figure,

generated by a Multistart of Construct1 on a 20 requirement problem, depicts both the

value of the best found objective so far as well as the solution value at each iteration. The

presence of several points that give the same or only slightly higher costs than the best

solution found is obvious. These near best solutions may be worth examining, as they may
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provide more favorable qualities, such as a better distribution of vehicles or a more

favorable timeline. As the number of requirements increase, the possibility of finding

several solutions that give similar costs is also expected to increase. TPFDD documents

are usually made up of a large number of requirements, so alternate optimal solutions are

common.

Parameters

A number of parameters must be set to build a solution for the TDP. These include

MAL for each requirement, lateness penalty, and available vehicle modes and types.

Additionally, each vehicle’s maximum payload and cycle cost is required, as well as the

number of cycles possible for each POD, destination, and mode combination. To ensure

consistency between the optimal integer program and the heuristics, identical parameters

are used in both methods. The cycles between each POD and destination were held

constant for all vehicles and origin/destination combinations at a level of 1 cycle per day.

MAL was also maintained at one day for each requirement. The penalty for each ton late

was set at $10,000 per day late. Vehicle modes, types, and their corresponding costs and

payloads used in the analysis are available in Table 5.

Table 5: Vehicle Payloads and Costs

Mode Type Payload Cost

C130 12 3
Air C17 35 9

C5 60 16

HEMTT 7 1
Road M1083 5 1

M35 8 1

DODX 200 60
Rail FTX 150 42

ITTX 180 52
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Due to variation between TPFDDs of equivalent sizes, it was difficult to choose

reasonable unloading and outloading constraints that worked for all TPFDDs. A level for

unloading and outloading must be low enough to ensure problem feasibility, but not so

high that single vehicle solutions are obtained. To acheive this, levels were varied for each

test problem. The levels of unloading and outloading were based on the average weight of

the requirements in the TPFDD divided by the payloads for the first vehicle type in each

mode. For the 20 and 100 requirement problems, an additional divisor of 2 was used to

increase difficulty and reduce the probability of getting single vehicle solutions. For the

more difficult 1000 requirement problems, a divisor of 1.1 was used to ensure feasibility.

Outloading and unloading constraints were identical to and from all locations.

All probabilistic functions require an additional input of the desired ratio of vehicle

types. For simplicity, all problems were started with equivalent vehicle likelihood. This

was accomplished by setting each vehicle ratio to 1/9.

The remainder of this chapter will use the function abbreviations in Table 6.

Associated attributes are shown in Table 7

Table 6: Function Abbreviations

Function Abbreviation

Construct 1 C1
Construct 2 C2

Probabilistic 1 P1
Probabilistic 2 P2
Probabilistic 3 P3
Probabilistic 4 P4
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Table 7: Function Attributes

Function C1 C2 P1 P2 P3 P4

Shuffled x x x x
Probabilistic x x x x

Ship Early x x x
Ship Over x x x

Results

The first step in the analysis is to build solutions to the TPFDDs with 20

requirements using the heuristics described in Chapter III. Because these problems are

relatively small, each iteration of the heuristics runs in a very short amount of time. This

allowed the programs to complete 500 iterations in the 20 second time frame. Table 6 lists

the function name abbreviations used in the remainder of this section, and Table 8 shows

the results from the 20 requirement problems.

All heuristics found feasible solutions without lateness to all of the 20 requirement

problems in under 20 seconds. In several cases, both Probabilistic 2 and Probabilistic 4

found the optimal solution. In addition to the objective values, the number of iterations

completed and the time it took to reach the best solution were recorded for each problem.

The best heuristic solution found for each problem is in bold text in the table. Based on

Table 8, Probabilistic 2 and 4 appear to outperform the other approaches. The summary

statistics in Table 9 better compare the results. Table 9 provides the average time until the

best solution is found, the average optimality gap, and the percentage of time the approach

found the best heuristic solution.

The values in Table 9 indicate that the solutions found by the heuristics were within

17% of the optimal for the constructive functions, within 5 to 7% for Probabilisic 1 and 3,

and within 2% for Probabilistic 2 and 4. Again, P2 and P4 appear the best.
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Table 8: 20 Requirement Solution Values in 500 Iterations

Problem Optimal C1 C2 P1 P2 P3 P4

1 610 732 736 694 632 656 632
2 738 875 858 844 738 744 738
3 632 722 722 641 632 660 632
4 604 731 700 654 604 663 604
5 475 543 543 492 476 487 476
6 772 903 902 827 812 805 774
7 927 1098 1121 1047 1000 1007 978
8 565 660 660 595 567 614 567
9 597 681 681 623 597 610 597

10 607 735 736 640 616 619 607
11 535 629 615 573 535 544 535
12 512 624 623 585 537 620 537
13 686 782 784 772 707 725 755
14 640 777 777 708 657 709 657
15 568 658 653 574 569 587 569
16 604 691 689 624 604 621 604
17 602 690 689 653 611 617 603
18 599 702 704 605 640 668 613
19 585 678 668 592 586 590 586

Table 9: Comparison Metrics for 20 Requirement TPFDDs

Metric C1 C2 P1 P2 P3 P4

Time to Best 3.92 8.36 3.65 12.00 3.37 11.25
% Best Found 0 0 0 73.7 0 94.7
% From Optimal 17.3 16.8 7.2 2.0 5.8 1.6

Table 9 indicates a distinct difference between the two shipping functions, Ship

Early, and Ship Over. In the methods where requirements were shipped over their entire

available window, the best solutions were not found until close to 10 seconds on average.

When requirements were shipped as early as they were available, good solutions were
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found in an average of under 5 seconds. Additionally, the solutions found using Ship Over

were better than those found using Ship Early.

Probabilistic 2 and 4 are clearly performing better than all other heuristics

implemented. The greediness of the constructive functions result in quick feasible

solutions, but they do not outperform the probabilistic functions in any cases. Although

Probabilistic 2 and 4 take longer to find solutions than Probabilitic 1 and 3, they found the

optimal solution in several cases, and still perform faster than the integer program.

The next step in the analysis examines the solutions obtained by the heuristics for

100 requirement TPFDDs. A similar approach was taken to compare the heuristics to the

optimal solutions as was used for the 20 requirement TPFDDs. Due to the size of the

problems, each iteration of the functions took a longer amount of time. While the 20

requirement TPFDDs allowed 500 iterations in 20 seconds, the 100 requirement TPFDDs

allowed only 150. Results from the 100 requirement tests are found in Table 10

The heuristics were able to generate on-time solutions to the majority of the 100

requirement problems. In the case of problem 9, each the heuristics actually found better

solutions than the integer program. This is possible because the integer program is

designed to return a solution when it comes within 50% of the lower bound, which in the

case of problem 9 was found to be 4127. Therefore, the solution returned by the integer

program is not always the actual optimal solution.

Interestingly, the trend observed from the 20 requirement problems did not

necessarily continue on to the 100 requirement problems. In these cases, as evidenced by

the bolded lowest found solutions in the table, Constructive 2 provided the best solutions

the majority of the time, instead of Probabilistic 2 or 4. However, for problems 15 and 16,

both constructive functions were unable to find on-time solutions. As long as an on time

solution can be found by the constructive solutions, it is generally good. Inability to find
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Table 10: 100 Requirement Solution Values in 150 Iterations

Prob Opt C1 C2 P1 P2 P3 P4

1 5608 5879 5683 6089 5839 6157 6118
2 4335 5199 5054 5458 5574 5519 5575
3 4819 5776 5686 6461 6342 6039 6631
4 4535 5484 5411 5825 5831 5672 5923
5 5267 5990 5867 6079 6022 6481 5822
6 4895 5622 5512 6016 6403 6271 5775
7 5755 6496 6449 6716 6994 6821 6867
8 4478 5495 5282 5856 5540 5805 5452
9 5615 5033 4932 5419 5571 5274 5551

10 5079 5828 5726 6320 6163 6248 6093
11 4984 5996 5794 6237 6175 6449 6052
12 4956 5568 5513 6040 6194 6052 6136
13 4901 5553 5432 5901 5831 5876 5966
14 5481 6148 5990 6662 6276 6797 6320
15 4902 895937 2695830 6293 6628 6479 6053
16 4594 555716 1125651 5888 6148 6202 6104
17 5228 6498 6270 7034 6427 6960 6774
18 4535 5506 5447 5775 5792 5650 5691
19 4911 6111 5968 6630 6286 6605 6285
20 4948 6034 5864 5926 5882 6035 6031

on-time solutions due to the greediness of the algorithms will only increase as problem

size increases.

Similar metrics were taken from these results as in the 20 requirement problems,

however, the presence of lateness in some solutions makes it difficult to compare some of

the metrics. To properly analyze the differences in the performance of the heuristics on the

100 requirement problems, additional metrics were used. First, a percentage was

calculated to reflect the proportion of time a heuristic found an on time solution. Next, the

average of the percent difference from optimal using these on time solutions was taken.

This allows for consideration of the likelihood of finding an on time solution and the

quality of solution we can expect, given an on time solution, for each of the heuristics
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studied. The average number of tons late, given a late solution, was also recorded for each

heuristic. These metrics are compiled in Table 11.

Table 11: Comparison Metrics for 100 Requirement TPFDDs

Metric C1 C2 P1 P2 P3 P4

Time to Best 7.11 18.15 9.10 28.73 10.29 29.09
% From Optimal 15.8 13.2 23.3 22.6 24.0 21.9
% On Time 90 90 100 100 100 100
% Best Found 0 85 5 0 0 10
Tons Late 72.58 191.07 N/A N/A N/A N/A

We note that there is degraded performance by all algorithms from the 20

requirement problems to the 100 requirement problems. This is most likely due to the

inability to perform as many iterations. Instead of coming within 5 or 10% of the optimal

solution, the heuristics are within 15 to 25% of the optimal. The time until the best

solution is found also increased from under 5 or 15 seconds to closer to 10 or 30. The

difference between the two shipping methods, however, remains consistent. Although the

methods shipping over the entire available window take longer, they tend to find better

solutions.

To further examine the performance of the algorithms on the 100 requirement

problems, the functions were allowed to perform 500 iterations. The results from these

runs are summarized in Table 12

Table 12: Comparison Metrics for 100 Requirement TPFDDs in 500 iterations

Metric C1 C2 P1 P2 P3 P4

Time to Best 19.38 51.00 28.07 92.16 27.80 91.34
% From Optimal 5.1 4.3 13.1 20.4 12.4 18.5
% Best Found 0 100 0 0 0 0
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Table 12 shows that increasing the number of iterations reduces the optimality gap.

Particularly, the gaps for the Constructive and Probabilistic 1 and 3 functions reduce more

than the gaps for the Probabilistic 2 and 4 functions. The previous late solutions from the

constructive functions are resolved with the extended run time, resulting in Constructive 2

finding all the lowest heuristic solutions.

The next and final step in the analysis is to test the heuristics on 1000 requirement

problems. Due to time constraints, only the first 1000 requirement problem was tested in

the integer programming model. Using Hafich’s Decision Support System, just over four

minutes was spent generating the integer model. The integer program then took an

additional 12 minutes to find a lower bound of 62,537 within the model solver. In twenty

minutes, a feasible objective was found at 64,664.

A quick analysis on the functions processing the 1000 requirement problems

showed 20 iterations or fewer being completed in 20 seconds. However, since the optimal

integer program can take several minutes to generate and even longer to actually solve, the

1000 requirement problems were allowed to run for longer than 20 seconds.

The heuristics performed an average of 1 iteration per second when using the Ship

Early function, and 1 iteration every 2 seconds when using the Ship Over function. Each

heuristic was run for 60 iterations, or roughly one to two minutes per problem.

Unfortunately, as predicted, the constructive heuristics could not generate on-time

solutions to the majority of the 1000 requirement problems. The results are found in Table

13, with the best found solution value bolded for each problem.

Although not all problems were run through the integer programming model, we

can note that all probabilistic functions found on-time solutions to the first problem in

under 2 minutes. The solutions found in this case were within 40% of the optimal.

Interestingly, Probabilistic 1 is responsible for finding the lowest solution in 65% of the
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Table 13: 1000 Requirement Solution Values in 60 Iterations

Problem C1 C2 P1 P2 P3 P4

1 1.35E+10 4.93E+09 90083 82770 89843 83592
2 1.08E+06 1.08E+06 79446 82589 80653 82273
3 2.71E+09 3.38E+08 81062 82227 80682 81728
4 1.34E+09 5.23E+07 80351 82480 80062 82054
5 1.71E+09 2.53E+06 79268 81248 79773 79704
6 1.27E+09 3.42E+06 79876 81723 80784 81774
7 7.52E+09 2.23E+09 81486 83314 82047 83196
8 5.39E+08 3.52E+06 77185 79127 78091 79322
9 1.90E+09 6.65E+07 80930 82915 81826 82463

10 1.90E+08 70680 79128 81217 79757 80452
11 3.67E+09 2.42E+08 79225 79400 79752 80451
12 8.23E+09 7.28E+09 81539 83199 83062 82967
13 4.33E+08 3.59E+05 77880 79149 78427 79604
14 70685 69350 78309 80682 78547 80822
15 5.78E+07 7.50E+05 78142 80064 78854 81009
16 1.37E+09 1.35E+08 80668 82713 81285 83050
17 2.59E+09 1.23E+08 77993 78703 77371 79731
18 3.67E+09 2.35E+08 80121 82792 81228 81656
19 4.14E+08 70900 80164 81804 80230 81708
20 3.89E+09 2.19E+09 81617 83223 82137 83755

problems. Also, every time Constructive 2 finds an on-time solution, it is the best solution

found. The summary statistics are available in Table 14.

Table 14: Comparison Metrics for 1000 Requirement Problems

Metric C1 C2 P1 P2 P3 P4

Time to Best 30.865 81.789 90.087 129.577 67.690 116.880
% Best Found 0 15 65 5 15 0

% On Time 5 15 100 100 100 100

To better compare the results of the heuristics to the results of the integer

programming model, the heuristics were allowed to run for twenty minutes each on the

first problem. The results from these extended tests are available in table 15. The
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constructive approaches were unable to find on-time solutions in the extended runs, and

therefore are not included in the table.

Table 15: 20 Minute runs on 1000 Requirement Problem

P1 P2 P3 P4

Solution 83679 82699 84395 82801
Time to Best 497.66 1047.30 435.51 775.73
% From Optimal 29.4 27.9 30.5 28.0

As evidenced by the figures in Table 15, 20 minute runs on the 1000 requirement

problems decreased the gap from the IP solution. The gap decreased for Probabilistic 1

and 3 more than it did for Probabilistic 2 and 4, showing that increased iterations on Ship

Early approaches is more beneficial than on Ship Over approaches.

The results presented in this chapter show applicability of a heuristic solution to the

TDP. Further conclusions from the research will be discussed in Chapter V.
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V. Conclusions and Future Research

This chapter provides a summary of the research conducted in this thesis. A

discussion of the conclusions follow and future topics of study are addressed.

Summary

This research constructed two distinct shipping methods used in conjunction with

four heuristics and two distinct metaheuristic approaches for solving instances of the

Theater Distribution Problem. The first shipping method examined an approach that

shipped as much of each requirement as possible on the first day it was available, while

the seccond method examined an approach that spread the shipment of each requirement

over its entire available shipping window. A purely constructive approach was designed

around each of the shipping methods. These constructive approaches were then adapted to

include a probabilistic vehicle choice element and ulitimately became the probabilistic 1

and 2 approaches. Finally, multistart metaheuristics were designed so that a number of

solutions could be found for each problem.

Following the development of the heuristic functions, test data was developed

through the use of a random TPFDD generator. Changes were made to the generator to

include longer and normally distributed delivery windows so that the data better mimicked

real world scenarios. The heuristics were tested on problems with 20, 100, and 1000

requirements.

Conclusions

All of the heuristics developed in this research quickly provide good solutions to the

20 and 100 requirement problems. In several cases, the heuristics found equivalent or

better solutions than those found by an integer programming model.
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Unfortunately, on-time solutions to the majority of the 1000 requirement problems

were not found by the constructive approaches. All probabilistic approaches were

successful in finding solutions to these problems in just 1 to 2 minutes. These results are

very good compared to the 20 to 30 minutes that it takes for the integer model to identify

solutions to problems of this size.

None of the heuristics dominates the others. On smaller, 20 requirement problems,

the Probabilistic 2 and 4 approaches outperformed the Constructive 1 and 2 and

Probabilistic 1 and 3 approaches. On 100 requirement problems, though, Constructive 2

provided the majority of minimum heuristic solutions. Finally, Probabilistic 1 was

responsible for the majority of the minimum solutions found on the 1000 requirement

problems, again different from the best performers in smaller cases. It is likely that the

increased size of the problems and inherent characteristics within them make problems of

different sizes better candidates for certain types of searches. Additional research can

focus on determining what methods work better on different problem types.

Although it is not particularly clear which of the heuristic models is the best

approach to the TDP, the constructive approaches can be ruled out. The inability to find

on-time solutions to the majority of the 1000 requirement problems does not fare well for

their application to even larger, full scale TPFDDs. The probabilistic approaches had no

issues generating solutions to these problems.

As problem size grows, the amount of time spent in the Probabilistic 2 and 4

functions increases more than the time spent in Probabilistic 1 and 3. This is due to the

iterative shipping method used in Ship Over, which adds only one vehicle at a time to a

requirement, as opposed to Ship Early, which adds as many vehicles as necessary or

possible all at once. For larger problems, faster solutions can be found using the Ship

Early approaches.
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This research identifies the applicability of heuristic models to the TDP. In general,

for small scale problems on the order of 20 to 100 requirements, the integer programming

model is appropriate. However, real world TPFDDs are on the order of thousands of

requirements. The time it takes to generate and develop solutions to a TPFDD of this size

within the integer program is too long, and optimal solutions may not even be necessary.

The methods developed in this research are a reasonable first answer to the TDP.

Additional methods should be examined and applied in order to ensure feasibility, quality

of solution, and control over problem size. This work shows the applicability of a heuristic

approach to the TDP, and provides a basis for further research.

Future Study

There are several possibilities for future study in regards to heuristic approaches to

the TDP. First, simple additions to the heuristics studied in this research are possible, such

as the use of a neighborhood search or variable reduction techniques. Next, a more

advanced metaheuristic search approach such as a tabu search or simulated annealing

could be applied. Finally, a study of TPFDD data parameters and their effect on solution

quality would be of interest.

The heuristics applied in this thesis are good at developing solutions quickly, but

there is no guarantee that the solutions obtained will be on-time. The addition of a

feasibility check and repair operator could greatly benefit the solution quality obtained,

and increase the amount of feasible and on-time solutions that are found. This could be

accomplished through the use of a simple neighborhood search such as one that swaps

requirements with different days or vehicle types. This could be applied not only for

repairing solutions but also for improving good solutions.

Along the same lines of the neighborhood search, a more advanced metaheuristic

approach that guides the neighborhood search could be applied. Tabu search is just one

example of an elegant search procedure that could provide favorable results.
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In addition to developing a neighborhood search, there is a definite need for some

variable reduction techniques within the code. Similar to the number of variables

generated in the original TDM, the coding applied in this thesis involved a lot of very

large matrices that included nonsense combinations. This resulted in problems running

much slower as the number of requirements increased. If more efficient data storage

techniques are applied within the heuristics, the amount of memory used in the procedure

would be greatly reduced. Efficient data storage eliminates the need to store values of zero

or nonsense combinations, and allows more iterations to be completed in shorter time

frames. With this, solutions for problems with more than 1000 requirements could be

obtained with relative ease.

Although Mr. Percival created a program to build random TPFDDs, the effect of

TPFDD characteristics on problem performance is largely unknown. It is hard to develop

TPFDDs that vary on more than simply the number of requirements. Knowledge on the

effect of varying parameters such as vehicle cost, cycles, and unloading or outloading

constraints on the cost of shipping a particular TPFDD could be very helpful. By

determining where the biggest bottlenecks are, it is easier for decision makers to

determine where their efforts should be focused. Understanding the effect that certain

parameters have could allow for a more streamlined heuristic solution approach.
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